Deriving Black-Scholes Partial Differential Equation

Derive Black-Scholes PDE with pricing by replication

finance
mathematics
Author

Eunki Chung

Published

November 25, 2022

Black-Scholes Partial Differential Equation

Black-Scholes PDE or Black-Scholes equation is an equation that governs the dynamics of European option value under the Black-Scholes model. The equation is given by,

vt+12σ2s22vs2+rsvsrv=0

Black-Scholes Model

dSt=μStdt+σStdWt

dBt=rBtdt

where (Wt)0tT is a Brownian motion.


I will use the following known facts without proof.

For infinitesimally small dt,

dWtO(dt)=O(dt1/2)

(dWt)2=dt

Pricing by replication

Consider a European option with payoff φ(ST) at maturity T that has its value of Vt at time t.

Construct a portfolio X that replicates the payoff of this European option. i.e., Xt=Vt

Let Xt=ΔtSt+XtΔtStBtBt.

where Δt indicates the number of shares of stocks in the portfolio.

If the value of Xt only depends on the value of S and B then

dXt=ΔtdSt+XtΔtStBtdBt=Δt(μStdt+σStdWt)+XtΔtStBtrBtdt=Δt(μStdt+σStdWt)+(XtΔtSt)rdt=ΔtSt(μr)dt+ΔtStσdWt+rXtdt

d(XtBt)=d(Xt1Bt)=dXt1Bt+Xtd(1Bt)+dXtd(1Bt)

Note that by letting f(Bt)=1Bt , for an infinitesimally small increment dt, we have

d(1Bt)=df(Bt)=f(Bt)dBt+12f(Bt)(dBt)2=1Bt2dBt+O(dt2)=rBtdtBt2=rBtdt

d(XtBt)=dXt1Bt+Xtd(1Bt)+dXtd(1Bt)=dXtBt+Xt(rBtdt)+dXt(rBtdt)=ΔtSt(μr)dt+ΔtStσdWt+rXtdtBtrXtBtdt+O(dt2+dt3/2)=ΔtSt(μr)dt+ΔtStσdWt+rXtdtBtrXtBtdt=ΔtStBt(μr)dt+ΔtStBtσdWt


Now consider the value of the European option at time t, Vt.

It is reasonable to assume that the value of a European option will only depend on time t and the stock price St.

That is, assume Vt=v(t,St).


By using the multi-dimensional Ito’s lemma,

dVt=dv(t,St)=vtdt+vsdSt+122vs2(dSt)2=vtdt+vs(μStdt+σStdWt)+122vs2(μStdt+σStdWt)2=vtdt+vs(μStdt+σStdWt)+122vs2(μ2St2(dt)2+σ2St2(dWt)2+2μσSt2dtdWt)=vtdt+vs(μStdt+σStdWt)+122vs2(O(dt2)+σ2St2dt+O(dt3/2))=vtdt+vsμStdt+vsσStdWt+122vs2σ2St2dt=[vt+vsμSt+122vs2σ2St2]dt+vsσStdWt

d(VtBt)=d(Vt1Bt)=dVt1Bt+Vtd(1Bt)+dVtd(1Bt)=dVtBt+Vt(rBtdt)+dVtd(1Bt)=dVtBtrVtBtdt+O(dt2+dt3/2)=dVtBtrVtBtdt+O(dt2+dt3/2)=1Bt(dVtrVtdt)=1Bt([vt+vsμSt+122vs2σ2St2]dt+vsσStdWtrVtdt)=1Bt([vt+vsμSt+122vs2σ2St2rVt]dt+vsσStdWt)

Suppose X0=V0 and d(VtBt)=d(XtBt), then we have

XtBt=X0B0+0td(XtBt)=V0B0+0td(VtBt)=VtBt.


From d(VtBt)=d(XtBt),

d(VtBt)d(XtBt)=01Bt([vt+vsμSt+122vs2σ2St2rVt]dt+vsσStdWt)(ΔtStBt(μr)dt+ΔtStBtσdWt)=01Bt([vt+vsμSt+122vs2σ2St2rVtΔtSt(μr)]dt+[vsσStΔtStσ]dWt)=0[vt+vsμSt+122vs2σ2St2rVtΔtSt(μr)]dt+[vsΔt]σStdWt=0

Choose Δt s.t. [vsΔt]σStdWt=0, i.e., Δt=vs.

[vt+vsμSt+122vs2σ2St2rVtvsSt(μr)]dt=0[vt+vsμSt+122vs2σ2St2rVtvsStμ+vsStr]dt=0[vt+122vs2σ2St2rVt+vsStr]dt=0vt+122vs2σ2s2rv+vsrs=0

By rearranging the expression, we have the Black-Scholes Partial Differential Equation.

vt+12σ2s22vs2+rsvsrv=0